

Ongoing research into failure rates and demographics of cables in North America Sub A Spring ICC 2025

N. Hampton D. Lewis J. Perkel J. Potvin

May 2025

in X f www.epri.com © 2025 Electric Power Research Institute, Inc. All rights reserved.

Distribution Asset Top 3 Challenges: Black & Veatch

	2016	2019	2024	Towards 2028
1	Reliability	Aging Infrastructure	Renewables	Renewables
2	Aging Infrastructure	Renewables	Aging 25%	Supply Chain
3	Aging Workforce	Aging Workforce	Lack of Skilled	Lack of Workers Engineer, Maintain, Operate
4	Renewables	Reliability	Upgrades / Modernisation	
5			Reliability 17%	\mathbf{S}
6			Aging Workforce	2%

Source: Black & Veatch Annual Electric Reports

Ageing Infrastructure – what do you need to know?

- How much
- How old
- What is failing
- Is my system failing at a high rate
- What is a typical failure rate
- Generally information is not available in one place within a utility
- It most often resides as "Institutional Knowledge" within the ranks of long term experienced engineers

Can the Internet and AI help us?

what is the reliability of electric distribution components

The reliability of electric distribution components is a critical factor in maintaining the overall performance and stability of a power distribution system. Reliability here refers to the ability of a component to perform its intended function without failure over a specified period under normal operating conditions.

Component	Typical Reliability	Common Issues
Transformers	High (MTBF: 20–40 years)	Overheating, insulation breakdown, oil leaks
Circuit Breakers	High (MTBF: 15–30 years)	Mechanical wear, contact erosion
Switches (e.g., reclosers)	Medium-High (MTBF: 10–20 years)	Mechanical failure, control logic issues
Fuses	High (simple and passive)	Nuisance blows, aging of material
Cables & Conductors	Medium-High (life expectancy: 30-50 years)	Insulation failure, corrosion, physical damage

What is the failure rate of underground power cables

The failure rate of underground power cables can vary depending on factors like cable type, installation quality, and environmental conditions. Studies indicate that a significant portion of failures—over 50%—are related to installation issues, such as poor insulation surface preparation or improper techniques 1. Other causes include aging, external damage, and manufacturing defects 1.

If you'd like, I can help you explore specific types of cables or mitigation strategies to reduce failure rates!

1 www.jicable.org

Approach

- Reach out to a wide range of utilities
- Select a specific time
- Request information / "Institutional Knowledge" available to hand
 - Failures, Source of failures
 - Lengths installed & being installed
 - Age estimates

Impact of Undergrounding on Reliability

Failure Rate Estimation

Failure Rate Estimation

Estimated Failure Rate - respondents

Source of failures – accessories / cable

Population Disbursement

Estimate of Cable Technologies: current Fleet - respondents

Age Disbursement

Age Distribution & Median Age: current Fleet

Does this mean the life expectancy of XLPE was 42 Years?

In Conclusion

- 1. Initially optimistic that it would be straightforward to capture Failure and Demographic Data
- 2. "Institutional Knowledge" is quickly leaking away. This will make managing the health of ageing assets more difficult in years to come
- 3. We are making strides this work
- 4. Al can assist but not solve use some real intelligence to point the Al in the correct direction
- 5. Set yourself up for success in the future talk to me at this meeting on how to participate in the improving the info to hand

Hopefully, with your assistance, this will be out of date by the next meeting as we add information from more utilities

Nigel Hampton has more than 35 years of experience in the MV, HV & EHV cable field at BICC in the United Kingdom, Borealis in Sweden, NEETRAC, UL Solutions and currently EPRI in the United States. He has been active in the international community of CIGRE participating in WG's on Space Charge, Water Tree Diagnostics, HVDC Testing and most recently as the US representative on the Reliability Analysis Group for HV & EHV. Nigel currently Chairs IEEE400.0 Field Testing Techniques and IEEE400.2 Field Testing using VLF Sources. Nigel has served as the Technical Advisor to the AEIC Cable Engineering Committee since 2008.

His current research interests include: Extruded MVDC, VLF Diagnostics, Cable System Ageing, Forensics, HV & EHV Cable Systems.